
Algorithmic Methods for Formal Verification

Ph.D. Final Report by: Yaniv Sa’ar

Supervisors: Prof. Amir Pnueli, Prof. Lenore D. Zuck, and Prof.
David Harel

DEPARTMENT OF COMPUTER SCIENCE AND APPLIED

MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE

October 03, 2010

Yaniv Sa’ar Ph.D Final Report - 1

1 Introduction

Over the past several decades, both industry and academic communities developed

a variety of tools and methodologies to address verification, namely whether a

given program meets its specifications. Most verification tools are based on two

common elements. On one hand the computational model which represents the

system implementation, and on the other hand the specification language which

represents the expectation from the implementation.

The computational model provides a general uniform representation for the

various programming languages and diverse constructs suggested for synchro-

nization and communication between the concurrent processes comprising a reac-

tive system. The computational model assigns a semantics to each reactive system.

This semantics associates with each program a behavior, which is a single or a set

of computation structures that represent its possible executions. In our case, the

semantics of a program is the set of its computations, where each computation is

a sequence of states that can be generated in a single execution of the program.

The specification language, is essentially temporal logic augmented by some

program specific predicates and functions, referring to the additional program-

ming constructs needed to fully describe a state in the computation of a reactive

program. In order to relate a specification presented by a formula in the logic to

the program it is supposed to specify, it is necessary that the computational struc-

tures defined to be the semantics of a program can serve as models (in the logical

sense) for the formula, which means that we can evaluate the formula on each of

these structures and find whether it holds (is true) on the structure. Then, we say

This final report is based on papers: [PSZ10b], [PPS06], [BPPS10], [MS11], [CNS+10c],
[CNS10a], [CNS10b], [PS08]. In the following, we give a bird’s eye summary of these papers.
For an indepth details, the reader is referred to the relevant paper.

Yaniv Sa’ar Ph.D Final Report - 2

that the program satisfies (or implements) the specification given by the formula

ϕ, if ϕ holds over each of the computation structures.

For example, in the linear semantics, the specification language is linear tem-

poral logic, whose models are arbitrary sequence of states, where each state has a

labeling among a finite set of propositions on which the logic is interpreted. Since

the semantics of a program is a set of computations, which are also sequence of

states, the specification ϕ is valid over the program P , if it holds over all the

computations of P .

Under the choice of linear semantics of a program P , concurrent activity of

two parallel processes in the program is represented by the interleaving of their

atomic actions (transitions). To compensate for this simple representation of

concurrency by interleaving, we add the notion of fairness to the computational

model. As suggested by Lamport [Lam77], these should come in two flavors:

weak fairness (to which we refer as justice) and strong fairness (to which we re-

fer as compassion). Given a justice requirement J , a computation σ is just if it

contains infinitely many occurrences of states that satisfy J . Given a compassion

requirement 〈p, q〉, a computation σ is compassionate if either σ contains only

finitely many states that satisfy p, or σ contains infinitely many occurrences of

states that satisfy q.

An important observation is that justice is a special case of compassion. This

is because the justice requirement J can also be expressed as the degenerate com-

passion requirement 〈1, J〉, where we write 1 to denote the assertion True which

holds at every state. In view of this observation, one may raise the natural ques-

tion of the necessity of keeping these two separate notions of fairness. Several

answers can be given to this question, one of which is that the treatment of com-

Yaniv Sa’ar Ph.D Final Report - 3

passion requirements is usually considered to be more complex than the treatment

of justice requirements. In our first hypothesis for this report, we claim that this is

not always true, namely, in some cases, the treatment of compassion requirements

is conceptually not more complex than the treatment of justice requirements.

To support our claim, we present a new deductive rule for verifying response

properties under the assumption of compassion requirements ([PS08, PSZ10a]).

We resolve an open problem of previous rules. All previous approaches to verifi-

cation of liveness under strong fairness requirements called for a recursive appli-

cation of the rule, that led to cumbersome and highly unnatural style of proofs.

We present a much improved version of a proof rule that contains no recur-

sion in its application. As such, it significantly streamline the methodology of

deductive verification of temporal properties. We prove that the rule is sound, and

present a constructive completeness proof for the case of finite-state systems. For

the general case, we present a relative completeness proof. We report about the

implementation of the rule in PVS and illustrate its application on some simple but

non-trivial examples.

We shell return to this point later when discussing compositional algorithms.

There we present a compositional algorithm for verification of parameterized sys-

tems that can also handle compassion requirements.

Using the common elements discussed above, many verification tools and

methodologies have been presented over the years, yet not much effort was made

to introduce a dedicated developer environment. An exception is TLV (Temporal

Logic Verifier) introduced by [PS96a, PS96b]. TLV is a computer-aided verifica-

tion environment, constructed as an additional layer, superimposed on top of CMU

SMV ([McM93]). TLV presented its own scripting language (TLV-BASIC) to de-

Yaniv Sa’ar Ph.D Final Report - 4

velop formal algorithms, using a set of tools provided by its libraries. As a result

of the development of TLV-BASIC, an important property that TLV holds, is an

on-the-fly interactive prompt. TLV slightly changed the usual design perspective.

Still TLV’s objective was to design a platform for combining deductive with algo-

rithmic verification. TLV-BASIC is procedural (as opposed to object oriented), and

is not very advanced with respect to programming environments available today.

The goal of bringing the verification algorithm developer closer to the front-

end of software engineering, suggests that she will be able to take the advantage of

advanced software techniques, such as programming reuse and abstraction, multi-

threaded applications, etc. Our main hypothesis for the second part of our work

is that adopting advanced programming techniques, implies that the developer is

now able to leverage her skills, as will become evident in the followings.

Our work starts by introducing a new computer-aided verification framework,

that provides a state-of-the-art, Integrated Developer Environment (IDE) for algo-

rithmic verification applications ([PSZ10b]). The framework, called JTLV (Java

Temporal Logic enVironment), is an eclipse plugin. JTLV aims to facilitate a rich,

common, and abstract Java API for the verification developer. The API is given in

a high-level programming language; Java. The underlying space complexity de-

rived from using BDD, is implemented in a low-level language; C, and is invisible

to the user. And thus, the user is given a high-level programming environment,

without having to worry about low-level space complexity.

We then continue to discuss one of the most ambitious and challenging prob-

lems in computer science; the automatic synthesis of programs and (digital) de-

signs from logical specifications. A solution to this problem would lift program-

ming from the current level, which is mostly imperative, to a declarative, logical

Yaniv Sa’ar Ph.D Final Report - 5

style. There is some evidence that this level is preferable, in particular when con-

currency plays an important role.

We present a novel type of game called General Reactivity of rank 1 (GR(1)).

We show symbolic algorithms to solve its game, to build a winning strategy and

several ways to optimize the winning strategy and to extract a system from it

([PPS06, BPPS10]). We demonstrate its solution with a JTLV-based application.

Based on the GR(1) fragment of LTL, we then continue to present AspectLTL

([MS11]), a temporal-logic based language for the specification and implementa-

tion of crosscutting concerns. AspectLTL enables the modular declarative spec-

ification of expressive concerns, covering the addition of new behaviors, as well

as the specification of safety and liveness properties. The language is supported

by a JTLV-based prototype tool, that literally lifts declarative programming into

practice.

We continue our quest to leverage the verification developer skills, by tackling

the framework of compositional reasoning. Standard model checking algorithms

prove safety properties through a reachability computation, computing an induc-

tive assertion (the reachable states) that is defined over the full state vector. They

often suffer from the state explosion problem [CG87]; for concurrent programs,

this is manifested as an exponential growth of the state space with increasing num-

ber of components.

A promising approach to ameliorate the state explosion problem, is to decom-

pose the verification task so that the reasoning is as localized as possible. The

local reasoning algorithm is a mechanization of the classical Owicki-Gries com-

positional method [OG76]. The foundation is a construction of a vector of local

(i.e., per-process) inductive invariants, θ = (θ1, θ2, . . . , θN). The invariants are

Yaniv Sa’ar Ph.D Final Report - 6

mutually interference-free. Such a vector is called a split-invariant, as the con-

junction of its components, (
∧
i θi), is always a globally inductive invariant. Lo-

cality is enforced by syntactically limiting each process assertion to the variables

visible to that process.

Both global inductiveness, and syntactical limitation strongly suggest that

JTLV would be superior to further investigate such a technique. We start by pre-

senting a multi-threaded application of the compositional technique ([CNS+10c]).

We then continue to develop a new compositional algorithm that can handle fair-

ness requirements locally ([CNS10a]). [CNS10a] also supports our prior claim,

namely, that in some cases, the treatment of compassion requirements is concep-

tually not more complex than the treatment of justice requirements. Finally, we

present SPLIT ([CNS10b]), that is to the best of our knowledge, the first tool to

implement a fully automated compositional method for both safety and liveness

properties.

The rest of the report is organized as follows. In Section 2 we present the first

part of our work, and discuss fairness in general. We then continue to present

in Subsection 2.2 a new deductive rule to prove response. In Section 3 we start

the main part of our work by presenting JTLV. Section 4 discuss the synthesis

problem, and in Subsection 4.1 we briefly describe the fragment of GR(1) and

its solution. In Subsection 4.2 the new aspectual LTL-based language called As-

pectLTL is presented. Section 5 discuss the compositional framework. Subsec-

tion 5.1 presents a new multi-threaded model checking algorithm, Subsection 5.2

presents a new compositional algorithm that can handle strong fairness, and Sub-

section 5.3 presents a new tool that implements the compositional framework.

Finally, in Section 6 we conclude the report.

Yaniv Sa’ar Ph.D Final Report - 7

2 Handling Compassion

An important component of the formal model of reactive systems is a set of fair-

ness requirements. As suggested by Lamport [Lam77], these should come in two

flavors: weak fairness (to which we refer as justice requirements) and strong fair-

ness (to which we refer as compassion). Originally, these two distinct notions of

fairness were formulated in terms of enableness and the activation of transitions

within a computation, as follows:

• The requirement that transition τ is just implies that if τ is continuously

enabled from a certain position on, then it is taken (activated) infinitely

many times.

An equivalent formulation is that every computation should contain in-

finitely many positions at which τ is disabled or has just been taken.

• The requirement that transition τ is compassionate implies that if τ is en-

abled infinitely many times in a computation σ, then it is taken infinitely

many times.

Justice requirements are used in order to guarantee that, in a parallel composition

of processes, no process is neglected forever from a certain point on. Compas-

sion, which is a more stringent requirement, is often associated with coordination

statements such as semaphore request y (equivalently lock y) operations or mes-

sage passing instructions. It implies fair arbitration in the allocation of an atomic

resource among several competing processes.

In a more abstract setting, a justice requirement is associated with an assertion

(first-order state formula) J , while a compassion requirement is associated with a

pair of assertions 〈p, q〉. With these identifications, the requirements are:

Yaniv Sa’ar Ph.D Final Report - 8

• A computation σ is just with respect to the requirement J , if σ contains

infinitely many occurrences of states that satisfy J .

• A computation σ is compassionate with respect to the requirement 〈p, q〉,

if either σ contains only finitely many p-positions or σ contains infinitely

many q-positions.

To see that these definitions are indeed generalizations of the transition-oriented

definition, we observe that the requirement that transition τ be just can be ex-

pressed by the abstract justice requirement Jτ = (¬En(τ) ∨ Taken(τ)), while the

requirement that transition τ be compassionate can be expressed by the abstract

compassion requirement Cτ = 〈En(τ),Taken(τ)〉. In these assertions, En(τ) is

true at all states on which τ is enabled. Similarly, Taken(τ) is true at all states that

can result by taking transition τ .

As discussed in Section 1, justice is a special case of compassion, which leads

to the natural question of the necessity of keeping these two separate notions of

fairness. Several answers can be given to this question. On the modeling level, the

argument is that these two notions represent different phenomena. Justice repre-

sents the natural independence of parallel processes in a multi-processing system.

Compassion is typically used to provide an abstract representation of queues and

priorities which are installed by the operating system in order to guarantee fairness

in coordination services provided to parallel processes.

Another answer to this question is a different cost associated with the imple-

mentation of these two notions. In a multi-processor system, justice comes for

free and is a result of the independent progress of parallel processes. In a multi-

programming system, where concurrency is simulated by scheduling, justice can

be implemented by any scheduling scheme that gives each process a fair chance to

Yaniv Sa’ar Ph.D Final Report - 9

progress, such as round-robin scheduling. Compassion, in both types of systems,

is usually implemented by maintenance of queues and use of priorities.

There is also a proof-theoretic answer to this question which is based on the

fact that, up to now, all the proposed deductive rules for proving properties un-

der the assumption of compassion were significantly more complex than the rule

under the assumption of justice alone. Our main claim here is this need not nec-

essarily be the case, and there exist deductive rules for verification in which the

price of compassion is comparable to that of justice.

2.1 The Legacy Recursive Rule

In the way of a background, we present rule F-WELL which is derived from the

proof rule presented in [MP91] and is representative of the different prices tradi-

tionally associated with the distinct notions of fairness. It is modified in order to

represent the transition from the computational model of fair transition systems

(used in [MP91]) to that of fair discrete systems (FDS) which we use here. The

rule is presented in Fig. 1.

The FDS (D\{〈pi, qi〉}) is obtained by removing from D the compassion re-

quirement 〈pi, qi〉. Thus, (D\{〈pi, qi〉}) has one compassion requirement less than

D.

The rule considers a system (FDS) which has both justice requirements (J) and

compassion requirements (C). It establishes for this system the temporal property

p =⇒ 1 q claiming that every p-state is followed by a q-state. The rule relies on

“helpful” fairness requirements F1, . . . , Fn which may be either justice or com-

passion requirements. Premise W3 imposes different conditions on each fairness

requirement Fi according to whether Fi is a compassion or a justice requirement.

Yaniv Sa’ar Ph.D Final Report - 10

Rule F-WELL

For a well-founded domain A : (W,�),
assertions p, q, ϕ1, . . . , ϕn,
fairness requirements F1, . . . , Fn ∈ J ∪ C,
and ranking functions ∆1 , . . . ,∆n where each ∆i : Σ 7→ W

W1. p =⇒ q ∨
∨n
j=1 ϕj

For each i = 1, . . . , n,
W2. ϕi ∧ ρ =⇒ q′ ∨ (ϕ′

i ∧∆i = ∆′
i)

∨
∨n
j=1(ϕ

′
j ∧∆i � ∆′

j)

W3. If Fi = 〈pi, qi〉 ∈ C then
C3. ϕi =⇒ ¬qi
C4. (D\{〈pi, qi〉}) |= (ϕi =⇒ 1(pi ∨ ¬ϕi))

Otherwise (Fi = Ji ∈ J),
J3. ϕi =⇒ ¬Ji

D |= (p =⇒ 1 q)

Figure 1: Legacy (recursive) rule F-WELL

Consider first the special case in which all the helpful requirements are justice

requirements. In this case, we only invoke premise J3 as an instance of W3. For

such a case, the rule provides a real reduction by establishing a temporal property,

based on premises which are all first-order.

On the other hand, if some of the helpful requirements are compassionate, then

some of the premises will include instances of C3 and C4. In this case, some of the

premises are temporal and have a syntactic form similar to that of the conclusion.

In such a case, one may ask whether this is not a circular rule in which the premises

are not necessarily simpler than the conclusion. As observed above, the rule is

not really circular because the premise C4 requires the establishment of a similar

temporal property but over a system with fewer compassion requirements. So

Yaniv Sa’ar Ph.D Final Report - 11

while the methodology is still sound, it appears cumbersome and its application

often requires explicit induction on the number of compassion requirements in the

analyzed system.

This explanation serves to illustrate that the application of this rule is sig-

nificantly more complex and cumbersome in the case that we have compassion

requirements, and the situation is much simpler if all the fairness requirements are

of the justice type. We refer to this phenomenon by saying that the application of

this rule is recursive in the presence of compassion requirements.

2.2 All You Need is Compassion [PS08, PSZ10a]

The main result here is based on a new deductive rule for response properties

which does not need any recursion in order to handle compassion requirements.

The rule, called FAIR-RESPONSE, is presented in Fig. 2.

Rule FAIR-RESPONSE

For a well-founded domain A : (W,�),
assertions p, q, ϕ1, . . . , ϕn,
compassion requirements 〈p1, q1〉, . . . , 〈pn, qn〉 ∈ C,
and ranking functions ∆1 , . . . ,∆n where each ∆i : Σ 7→ W

R1. p =⇒ q ∨
∨n
j=1(pj ∧ ϕj)

For each i = 1, . . . , n,
R2. pi ∧ ϕi ∧ ρ =⇒ q′ ∨

∨n
j=1(p

′
j ∧ ϕ′

j)

R3. ϕi ∧ ρ =⇒ q′ ∨ (ϕ′
i ∧∆i = ∆′

i)

∨
∨n
j=1(p

′
j ∧ ϕ′

j ∧∆i � ∆′
j)

R4. ϕi =⇒ ¬qi

p =⇒ 1 q

Figure 2: Deductive rule FAIR-RESPONSE

Yaniv Sa’ar Ph.D Final Report - 12

For simplicity, we presented the rule for the case that the system contains

only compassion requirements but no justice requirements. This is not a serious

restriction since any original justice requirement J ∈ JD can be represented by

an equivalent compassion requirement 〈1, J〉. Similarly to the previous version of

this rule, the rule relies on a set of premises guaranteeing that a computation which

contains a p-state that is not followed by a q-state leads to an infinite chain of

descending ranks. Since the ranks range over a well-founded domain A : (W,�),

this leads to a contradiction.

In view of the simple form of the rule, it appears that, in many cases, the

study and analysis of fair discrete systems can concentrate on the treatment of

compassion requirements, and deal with justice requirements as a special case

of a compassion requirement. This does not imply that we suggest giving up

the class of justice requirements altogether. For modeling and implementation

of reactive systems, we should keep these two classes of fairness requirements

distinct. However, the main message of this paper is that, when verifying temporal

properties of FDS’s, the treatment of compassion requirements is conceptually

not more complex than the treatment of justice requirements. Computationally,

though, justice is simpler in the same way that checking emptiness of generalized

Büchi automata is simpler than checking emptiness of Streett automata.

The new rule has been implemented in the theorem prover PVS [OSRSC01].

In fact, it has been added as an additional rule (and associated strategy) within the

PVS-based temporal prover TLPVS [PA04]. In order to do so, we had to prove

the soundness of the FAIR-RESPONSE rule within PVS. We continue to present a

constructive completeness proof for the case of finite-state systems, and a relative

completeness proof for the general case. We illustrate its application on some

Yaniv Sa’ar Ph.D Final Report - 13

simple but non-trivial examples.

3 JTLV: A Framework for Developing Verification
Algorithms [PSZ10b]

Most existing verification tools are designed to serve as verifiers where, to im-

plement all but the simplest algorithm, a developer is assumed to be intimately

familiar with the internal structure and implementation details of the system. For

reasons of efficiency, verification systems are commonly implemented in a low-

level C code.

We present JTLV (Java Temporal Logic enVironment), a tool that provides an

abstract framework for developing verification applications in a high-level pro-

gramming environment. JTLV allows the developer to focus on the verification

goals at hand without sacrificing performance or dealing with low-level details of

the verification tool.

JTLV is a computer-aided verification scripting environment offering state-of-

the-art integrated developer environment for algorithmic verification applications.

JTLV may be viewed as a new, and much enhanced TLV [PS96a], with Java rather

than TLV-basic as the scripting language. JTLV attaches its internal parsers as

Eclipse editors, and facilitates a rich, common, and abstract verification developer

environment that is implemented as an Eclipse plugin.

JTLV allows for easy access to various low-level BDD packages with a high-

level Java programming environment, without the need to alter, or even access, the

implementation of the underlying BDD packages. It allows for the manipulation

and on-the-fly creation of BDD structures originating from various BDD packages,

†JTLV homepage: http://jtlv.ysaar.net

http://jtlv.ysaar.net

Yaniv Sa’ar Ph.D Final Report - 14

whether existing ones (e.g., CUDD [Som98], BUDDY [Nie], and CAL [SRBV96])

or user-defined ones. In fact, the developer can instantiate several BDD managers,

and alternate between them during run-time of a single application so to gain their

combined benefits.

Through the high-level API the developer can load into the Java code several

SMV-like modules representing programs and specification files, and directly ac-

cess their components. The developer can also procedurally construct such mod-

ules and specifications, which enables loading various data structures (e.g., State-

charts, LSCs, and automata) and compile them into modules.

JTLV offers users the advantages of the numerous tools developed by Java’s

ecosystem (e.g., debuggers, performance tools, etc.). Moreover, JTLV develop-

ers are able to introduce software methodologies such as multi-threading, object

oriented design for verification algorithms, and reuse of implementations.

We are happy to report that JTLV already has a small, and avid, user com-

munity, including researchers from Imperial College London [Pit09], New York

University [CNS10b, CNS10a, CNS+10c], Bell Labs Alcatel-Lucent [CNS10b,

CNS10a, CNS+10c], Weizmann Institute [HMS10, HS10], Microsoft Research

Cambridge, RWTH-Aachen, California Institute of Technology [WTM10b,

WTM10a], GRASP Laboratory University of Pennsylvania [GAPK08], and Uni-

versity of California Los Angeles. In these works JTLV is applied to: Streett and

Rabin Games; Synthesis of GR(k) specifications; Compositional multi-theaded

model checking; Compositional LTL model checking; Verifying heap properties

([BPSZ10]); Automata representation of LSCs and Statecharts; Synthesis of LSCs

and of hybrid controllers.

The JTLV library (see [Sa’]) includes numerous model checking applications,

Yaniv Sa’ar Ph.D Final Report - 15

including LTL and CTL* model checking [KPRS02], fair-simulation [KPP03],

a synthesis algorithm [PPS06], Streett and Rabin games [PP06], compositional

model checking ([CN08]), and compositional multi threaded model checking

[CNS+10c]. The API can also facilitate the reduction of other models into the

verification framework (see, e.g., [HMS10] where LSCs are reduced to automata).

4 Synthesis

We address the problem of automatically synthesizing digital designs from linear-

time specifications. We consider various classes of specifications that can be syn-

thesized with effort cubic in the number of states of the reactive system, where we

measure effort in symbolic steps.

The synthesis algorithm is based on a novel type of game called General Re-

activity of rank 1 (GR(1)), with a winning condition of the form

(01 p1 ∧ · · · ∧01 pm)→ (01 q1 ∧ · · · ∧01 qn),

where each pi and qi is a Boolean combination of atomic propositions. We show

symbolic algorithms to solve this game, to build a winning strategy and several

ways to optimize the winning strategy and to extract a system from it. We also

show how to use GR(1) games to solve the synthesis of LTL specifications in many

interesting cases.

We continue to present AspectLTL ([MS11]), a new declarative programming

language that is based on the GR(1) fragment of LTL. AspectLTL is a temporal-

logic based language for the specification and implementation of crosscutting con-

cerns, that lifts declarative programming into practice. It enables the modular

declarative specification of expressive concerns, covering the addition of new be-

Yaniv Sa’ar Ph.D Final Report - 16

haviors, as well as the specification of safety and liveness properties. Given an

AspectLTL specification, consisting of a base system and a set of aspects, we pro-

vide AspectLTL with a composition and synthesis-based weaving process, whose

output is a correct-by-construction executable artifact. The language is supported

by a JTLV-based prototype tool and is demonstrated using a running example.

4.1 Synthesis of Reactive(1) Designs [PPS06, BPPS10]

The synthesis problem was first identified by Church [Chu63]. Several methods

have been proposed for its solution [BL69, Rab72]. The two prevalent approaches

to solving the synthesis problem were by reducing it to the emptiness problem of

tree automata, and viewing it as the solution of a two-person game. In these

preliminary studies of the problem, the logical specification that the synthesized

system should satisfy was given as an S1S formula and the complexity of synthesis

is non-elementary.

The problem was considered again in [PR89] in the context of synthesizing

reactive modules from a specification given in Linear Temporal Logic (LTL). This

followed two previous attempts [CE81, MW84] to synthesize programs from tem-

poral specification, which reduced the synthesis problem to satisfiability, ignoring

the fact that the environment should be treated as an adversary. The method pro-

posed in [PR89] for a given LTL specification ϕ starts by constructing a Büchi

automaton Bϕ, which is then determinized into a deterministic Rabin automaton.

This double translation necessarily causes a doubly exponential time complexity

[Ros92].

The high complexity established in [PR89, Ros92] caused the synthesis pro-

cess to be identified as hopelessly intractable and discouraged many practitioners

Yaniv Sa’ar Ph.D Final Report - 17

from ever attempting to use it for any sizeable system development. Yet there

exist several interesting cases where the synthesis problem can be solved in poly-

nomial time, by using simpler automata or partial fragments of LTL [WHT03,

AT04, HRS05, JGB05]. Representative cases are the work in [AMPS98] which

presents an efficient quadratic solution (N2) to games (and hence synthesis prob-

lems) where the acceptance condition is one of the LTL formulas0 p,1 q,01 p,

or 10 q. A more recent paper is [AT04] which presents efficient synthesis ap-

proaches for the LTL fragment consisting of a Boolean combinations of formulas

of the form0 p.

Our work can be viewed as a generalization of the results of [AMPS98] and

[AT04] into the wider class of Generalized Reactivity(1) formulas (GR(1)), i.e.,

formulas of the form

(01 p1 ∧ · · · ∧01 pm) → (01 q1 ∧ · · · ∧01 qn). (1)

Here, we assume that the specification is an implication between a set of assump-

tions and a set of guarantees. Following the results of [KPP05], we show how

any synthesis problem whose specification is a GR(1) formula can be solved with

effortO(N3), whereN is the size of the state space of the design and effort is mea-

sured in symbolic steps, i.e., in the number of preimage computations [BGS06].

Furthermore, we present a symbolic algorithm for extracting a design (program)

which implements the specification.

We show that GR(1) formulas can be used to represent a relatively wide set of

specifications. First, we show that we can include past LTL formulas in both the

assumptions and the guarantees. Second, we show that each of the assumptions

and guarantees can be a deterministic Just Discrete System (Büchi automaton).

Thus, our method does not suffer from the exponential blow-ups incurred in LTL

Yaniv Sa’ar Ph.D Final Report - 18

synthesis for the translation of the formula to an automaton and for the deter-

minization of the automaton because the user provides the specification as a set of

deterministic automata. (But note that the state space of the system is the product

of the sizes of the automata, which may cause an exponential blowup). Further-

more, a symbolic implementation of our algorithm is easily obtained when the

automata are represented in symbolic form. One drawback is that our formalism

is less expressive than LTL. In particular, Reactivity (Streett) conditions can not

be expressed.

The reader may suspect that GR(1) specifications place an undue burden on

the user or that its expressive power is too limited. We argue that this is not the

case. Intuitively, many specifications can naturally be split into assumptions on

the environment and guarantees on the system. (Cf. [Pnu85].) Often, assumptions

and guarantees can naturally be written as conjunctions of simple properties that

are easily expressed as deterministic automata.

As an evident to our argument, [BGJ+07] have shown two case studies of

small but realistic industrial modules. Their first case study concerns a generalized

buffer from IBM, a tutorial design for which a good specification is available. The

second concerns the arbiter for one of the AMBA buses [Ltd99], a characteristic

industrial design that is not too big.

We stresses the compositionality of synthesis from LTL specifications and the

structure of specifications as a guide to efficient synthesis. At the same time, we

emphasizes the symbolic analysis of state space through the usage of BDDs.

Our work presents the algorithms and techniques used to synthesize systems.

We show how to solve Generalized Reactive(1) games symbolically, compute a

winning strategy, and extract a correct program, if it exists. We present the JTLV

Yaniv Sa’ar Ph.D Final Report - 19

implementation, and finally show how the techniques developed can be used to

synthesize systems from temporal specifications.

4.2 AspectLTL: An Aspect Language for LTL Specifications
[MS11]

A common characteristic of languages of the aspect-oriented programming

paradigm [KLM+97] and of related advanced modularity paradigms, is that their

structural building blocks specify separate, yet possibly inter-dependent crosscut-

ting concerns. This poses a major challenge, which is the automated composition

or weaving of these separate specifications or program pieces into a single correct

implementation, one which can be programmatically executed and indeed sup-

ports and follows the different concerns.

To address this challenge, a balance needs to be made between the extent of

modularity of the program specification or code to go beyond traditional abstrac-

tion boundaries, the language’s expressive power in specifying and manipulating

system behavior, and the ability to automatically transform or weave such a mod-

ular specification or code into an executable correct artifact. The more modular

or structurally and syntactically separate yet semantically inter-dependent and ex-

pressive the language constructs are, the more difficult it becomes to automatically

generate a correct implementation.

Our work presents AspectLTL, a language for the specification and implemen-

tation of crosscutting concerns, based on linear temporal logic (LTL) [Pnu77]. The

aspects of AspectLTL, called LTL aspects, enable the declarative specification of

expressive crosscutting concerns. These include the specification of safety prop-

erties, which may be used to prevent a base system from visiting ‘bad states’, the

Yaniv Sa’ar Ph.D Final Report - 20

specification of liveness (fairness) properties, which may be used to force a base

system to visit ‘good states’ (infinitely often), and the addition of new behaviors

to a base system, which is done by specifying the existence of new transitions and

new states as necessary. To use the categorization by Katz [Kat06], LTL aspects

can specify spectative, regulative, and invasive aspects.

Moreover, we provide AspectLTL with a synthesis-based JTLV weaving appli-

cation, whose output is a correct-by-construction executable artifact. Following a

composition of the specified aspects with a base system, using symbolic disjunc-

tive and conjunctive operations, we formulate the problem of correct weaving as

a synthesis problem [PR89], essentially a game between the environment and the

(augmented) base system. An algorithm based on [PPS06] is used to solve the

game, that is, to provide the augmented system with a winning strategy, if any.

If a winning strategy is found, it is presented as a deterministic, executable

automaton, which represents an augmented base system whose behavior is guar-

anteed to adhere to the specified aspects, in all possible environments. If a winning

strategy is not found, we know that it does not exist, that is, that no system exists

which is based on the base system and can adhere to the specified LTL aspects

in all environments. Thus, LTL aspect composition and synthesis is sound and

complete.

Our work can be viewed as demonstrating how correct aspect weaving can be

reduced to (a variant of) the classical synthesis problem. An AspectLTL speci-

fication is made of a base system, given as a finite-state machine specified in an

SMV [SMV] format, and a set of LTL aspects, each of which is specified in a sim-

ilar SMV-like format, containing a symbolic representation of the aspect’s added

behaviors (transitions) and a related LTL specification. As the base system as-

Yaniv Sa’ar Ph.D Final Report - 21

sumes nothing about the LTL aspects it may be woven with, AspectLTL supports

obliviousness. Moreover, the use of the symbolic representation provides quan-

tification: rather than relating to concrete states, a single formula typically relates

to a set of states. These two language features, obliviousness and quantification,

are considered a distinguishing characteristic of aspect languages [FF05], and so,

indeed, AspectLTL is an aspect language.

An aspect language has a join point model (JPM), which defines the points

where an aspect may interfere with a base, how these points may be specified,

and how the additional aspect behavior is defined. AspectLTL features a very

general and permissive JPM: it allows new transitions to be added at any state of

the base system: all states are possible join points and pointcuts are not specified

explicitly. The “advice” of LTL aspects has not only local and specific effect on

selected points along the execution, but also a global, temporal and general effect

on ongoing, infinite executions.

Some previous works have formally characterized aspects using LTL or au-

tomata, mainly in order to prove aspect correctness using model-checking tech-

niques (see, e.g., [GK07, KFG04]). Other works translate LTL properties into

corresponding monitors written using aspect code (e.g., in AspectJ), as a means

for LTL runtime verification (see, e.g., [SB05]). In contrast to the above two lines

of work, our main goal is to use an LTL characterization of aspects as an input for a

composition and synthesis process, in order to produce a correct-by-construction

executable system. In other words, we use LTL not only as a specification lan-

guage but also as a programming language, leading directly into an executable

artifact.

Moreover, it is important to distinguish AspectLTL synthesis from other forms

Yaniv Sa’ar Ph.D Final Report - 22

of composition and program synthesis that have attracted research attention in

recent years. Correct composition of features (see, e.g., [KA08, TBKC07]), for

example, is typically discussed at the level of safe type checking, and not at the

level of the actual semantics of the features involved: features can be composed

if the resulting program is type-safe and compiles, not if its semantics (in terms

of input/output or event sequences) indeed complies with each of the features’

specifications.

AspectLTL is supported by a prototype Eclipse plug-in, which we have de-

veloped on top of JTLV. We used this prototype to define several AspectLTL

specifications, to weave them, and to run the generated executable artifacts. To

demonstrate our ideas, we presented a running example. The example is initially

built from an underlying base system, which models a service for students exams.

We start off with a base system, and use it as a minimal basis on which to add

aspects.

5 Compositional Methods

The verification of concurrent programs remains an elusive goal, in spite of nu-

merous advances in model checking methods. The main difficulty is state explo-

sion – the verification question is PSPACE-hard in the number of components.

In practice, this means that the size of the state space is often exponential in the

number of processes. Symbolic BDD-based approaches have ameliorated this dif-

ficulty to some extent.

A promising approach to further ameliorate state explosion is to decompose a

verification task so that the reasoning is as localized as possible. The local rea-

soning algorithm is a mechanization of the classical Owicki-Gries compositional

Yaniv Sa’ar Ph.D Final Report - 23

method [OG76]. The setting is that of asynchronous, shared-memory protocols.

The algorithm constructs a “local proof”, which is a collection of per-process

invariants, {θi}, whose conjunction (i.e., θ1 ∧ θ2 . . . ∧ θN) is guaranteed to be an

inductive whole-program invariant. This vector of local assertions is called a split-

invariant, as the program invariant is in this conjunctive form. The computation of

the strongest split invariant is a simultaneous fixpoint computation over the vector

(θ1, θ2, . . . , θN).

However, the strongest split invariant may be weaker than the set of reachable

states, and therefore not strong enough to prove a safety property. [CN07] solved

this problem by formulating a complete verification procedure which strengthens

the split invariant by discovering and adding auxiliary shared variables to track

local predicates. [CN08], used the split invariance as the basis for a new com-

positional algorithm for checking LTL properties. Experiments reported in these

papers show that assertional local reasoning can be significantly faster than mono-

lithic (i.e., non-compositional) model checking.

5.1 Parallelizing A Symbolic Compositional Model-Checking
Algorithm [CNS+10c]

We describe a parallel, symbolic, model-checking algorithm, built around a com-

positional reasoning method. The compositional method, called “local reason-

ing”, builds a collection of per-process (i.e., local) invariants, which together im-

ply a desired global safety property. The local proof computation is a simultane-

ous fixpoint evaluation, which lends itself to parallelization. Moreover, the local-

ity of the computation makes it possible to partition work across several threads,

each with its own BDD manager, while limiting the amount of cross-thread copy-

Yaniv Sa’ar Ph.D Final Report - 24

ing. Experimental results are encouraging, and show that the parallelized com-

putation can achieve substantial speed-up, without incurring significant memory

overhead.

In this work, we explore the parallelization of a symbolic compositional rea-

soning algorithm for checking safety properties. Prior approaches to paralleliza-

tion partition the BDD representation of the reachability frontier, or the image

computation itself, but nonetheless compute the exact set of reachable states.

Our method has a different starting point: we parallelize a local reasoning (i.e.,

compositional) approach to the verification of safety properties. Local reasoning

consists of computing per-process (hence, “local”) invariants, using limited in-

formation about the local state of other processes. Compositional reasoning has

inherent advantages for parallelization: the analysis can be carried out separately

for each process, and the information that must be exchanged between processes

is limited, by the nature of the analysis. Previous works ([CN07, CN08]), have

shown that local reasoning often out-performs the standard reachability-based

method of verifying safety properties. We show that it also lends itself to par-

allelization. To the best of our knowledge, this is the first approach to parallel

model checking based on automatic compositional analysis.

The computation of the strongest split invariant over the vector (θ1, θ2, . . . , θN),

is naturally parallelizable. In the simplest setting, each thread of a multi-thread

system is responsible for computing one component of the fixpoint. Communica-

tion from thread i to another thread j is limited (by the analysis) to communicating

the effect that the transitions of processes i have on the shared program state.

While it is easy to see how to parallelize the fixpoint computation, an actual

implementation with BDDs is not straightforward. The BDD data structure is natu-

Yaniv Sa’ar Ph.D Final Report - 25

rally “entangled”. Standard BDD libraries are not thread-safe. We show, however,

that one can exploit the locality of the reasoning, and use multiple non-thread-safe

BDD managers, one per thread. Synchronization is needed only during the phase

of the algorithm where shared effects are communicated between threads.

The algorithm has been implemented using JTLV. The experimental results

are encouraging. On several (parameterized) protocols, the parallel algorithm

demonstrates speedup ranging from 3.5 to nearly 6.4 on a system with 8 cores.

The memory overhead due to multiple BDD managers is small, usually about 5%,

with an upper limit of 30%.

The extension of the local reasoning computation to liveness properties given

in [CN08] is also easily parallelizable. In a nutshell, the liveness algorithm first

computes the strongest split invariant, followed by an independent analysis of

each component process. The second step is trivially parallelized.

To summarize, the parallelization of the local reasoning algorithm results in

significant speedup, without incurring substantial memory overhead. As local

reasoning is itself often more efficient than a global reachability computation,

parallelization offers a multiplicative improvement over a sequential reachabil-

ity computation. While our implementation and experiments are with finite-state

protocols, the algorithmic ideas are more general, and apply also to non-finite

domains, such as those used in static program analysis.

5.2 A Dash of Fairness for Compositional Reasoning [CNS10a]

Proofs of progress properties often require fairness assumptions. Directly incor-

porating global fairness assumptions in a compositional method is difficult, given

the local flavor of such reasoning. We present a fully automated local reasoning

Yaniv Sa’ar Ph.D Final Report - 26

algorithm which handles fairness assumptions. Experiments demonstrate that the

new algorithm shows significant improvement over standard model checking.

This work is the continuation of a line of research on mechanizing assertional

(i.e., state-predicate based) compositional verification. The starting point is the

computation of the strongest split invariant. Our work develops a new algorithm

for compositional model checking with fairness assumptions, which tackles this

problem with a successive refinement method. It also presents a new composi-

tional proof rule for verification under fairness. Moreover, the model checking

algorithm can be instrumented to generate a valid instantiation of the proof rule

upon success.

Fairness assumptions are often needed for proofs of progress properties. It

has long been understood how to incorporate fairness in standard model checking

[CES86, EL87], but doing so is a challenge for compositional methods. The diffi-

culty is that fairness assumptions commonly refer to local states from a number of

processes. For example, a common (strong) fairness constraint is that “for every

process: if the process is enabled infinitely often, it is infinitely often executed”.

As “enabledness” depends on local states, this assumption refers to the local states

of every process. Since compositional reasoning is based on a per-process view,

the presence of such global assumptions can be problematic.

As previously mentioned, the strongest split invariant may be weaker than the

set of reachable states, and therefore not strong enough to prove a safety prop-

erty. The local liveness method of [CN08] does not directly apply to fairness

constraints. This is because the method is sound only for properties expressed

over shared variables. Incorporating fairness into the specification, through the

identity M |= AFair(Spec) ≡ M |= A(Fair ⇒ Spec), results in a new

Yaniv Sa’ar Ph.D Final Report - 27

specification which names a number of local variables (due to Fair). One can, of

course, turn all the local variables in Fair into shared variables, but this defeats

the purpose of local reasoning.

The new algorithm gets around this difficulty by a process of iterative refine-

ment. The fairness constraint is replaced with a weaker form, which depends

monotonically on the current split invariant, and is expressed over only the shared

variables. This allows using the compositional algorithm from [CN08], with slight

modifications. If verification succeeds with the weaker fairness assumption, the

property is proved. If not, a bogus counter-example is produced, and analyzed

to discover new local predicates which are then exposed as auxiliary shared vari-

ables. Exposing local state strengthens the split invariant in the next round of com-

putation, which strengthens the abstracted fairness assumption by monotonicity.

This is repeated until a decisive result (either success or a real counter-example) is

obtained. The iterative process terminates—and is thus complete—for finite-state

programs: eventually, enough of the local state is exposed to either prove a cor-

rect property or to disprove an incorrect one. Moreover, it is possible to disprove

a property without building up the entire state space.

The algorithm, being predicate-based, has a simple implementation using JTLV.

We carry out an evaluation with several parameterized protocols, where each in-

stance of the protocol is finite-state. The experimental results show promise: the

compositional verification is faster in almost all cases, sometimes by one or two

orders of magnitude. Exposing a limited amount of local state suffices for both

proofs and disproofs of properties, validating the basic premise behind composi-

tional reasoning.

Yaniv Sa’ar Ph.D Final Report - 28

5.3 SPLIT: A Compositional LTL Verifier [CNS10b]

We present SPLIT, a new tool for the verification of shared-variable, asynchronous

concurrent programs. SPLIT ameliorates state explosion through assertional (i.e.,

state-based) compositional reasoning, based on the classical Owicki-Gries method

[OG76], as describe above.

SPLIT implements the techniques of [Nam07, CN07, CN08, CNS10a] for ver-

ifying safety and general LTL properties. The foundation is a computation of

compact local invariants, one for each process, which are used for constructing

a proof for the property. An automatic refinement procedure gradually exposes

more local information, until a decisive result (proof/disproof) is obtained.

SPLIT implements a number of algorithms; together, they result in a fully

automatic compositional model checker for general LTL properties.

1. A simultaneous least fixpoint algorithm [Nam07], which computes the

strongest split invariant vector (A split invariant is usually weaker than the

set of reachable states.)

2. A safety refinement method [CN07], which achieves completeness by grad-

ually “exposing” local predicates (i.e., encoding them as shared variables)

3. A compositional algorithm which verifies arbitrary LTL properties [CN08],

based on a split invariance computation and a counter-example based re-

finement scheme

4. A recently developed compositional algorithm [CNS10a], for the verifica-

tion of progress properties under general fairness assumptions

Yaniv Sa’ar Ph.D Final Report - 29

Experimental results support the hypothesis that local reasoning allows ver-

ifying significantly larger systems without running into state explosion, and can

result in order-of-magnitude improvements in run-time over monolithic model

checking. It is interesting that basic local reasoning suffices for the proofs for

many protocols, without a need for refinement. In many other cases, a proof or

disproof is obtained by exposing a limited amount of local state, validating the

basic argument for compositional verification. SPLIT has been used to verify pro-

tocols for cache coherence and mutual exclusion. To the best of our knowledge,

this is the first tool to implement a fully automated compositional method for both

safety and liveness properties.

6 Conclusion

We start our work by raising two hypothesises, both fundamental in the field of

verification. The first concerns the treatment of fairness requirements, specifically

whether the treatment of compassion requirements is harder than the treatment

of justice requirements. Our second concerns the acute gap between verification

developer skills and the lack of an adequate environment to support these skills.

As to the treatment of fairness requirements, we present two lines of work, one

introducing a new deductive rule for verifying response properties where the com-

passion is treated without recursion ([PS08, PSZ10a]), and one that introduces a

new algorithm that locally incorporates both justice and compassion requirements

in compositional framework ([CNS10a]).

Computationally, justice is simpler in the same way that checking emptiness

of generalized Büchi automata is simpler than checking emptiness of Streett au-

tomata. We show that when verifying temporal properties of FDS, the treatment

Yaniv Sa’ar Ph.D Final Report - 30

of compassion requirements is conceptually not more complex than the treatment

of justice requirements.

To supply a developing environment for verification, we developed JTLV

([PSZ10b]), a new framework for developing verification algorithms. We demon-

strate the power of JTLV, by applying it to the problem of synthesis, and to the

problem of compositional reasoning: For synthesis we give a solution to the

GR(1) fragment of LTL ([PPS06, BPPS10]), as well as present AspectLTL – a

new temporal-logic based programming language ([MS11]). For compositional

reasoning, we present a new compositional algorithm that exploits the benefit of

a multi-core system ([CNS+10c]), a new compositional algorithm that can handle

fairness requirements locally ([CNS10a]), and a fully automated implementation

of our compositional framework ([CNS10b]).

We conclude that the high complexity established for LTL synthesis, does not

necessarily identify it as intractable, and that we can use the GR(1) fragment

present a declarative style programming language. On the other hand we also con-

clude that compositional reasoning is a promising approach to ameliorate the state

explosion problem. Thus we use JTLV for a variety of applications, ranging from

the treatment of fairness properties, to synthesis, to compositional verification, and

conclude that adopting an advanced environment leverage the developer’s skills.

References

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Con-

troller synthesis for timed automata. In IFAC Symposium on System

Structure and Control, pages 469–474. Elsevier, 1998.

Yaniv Sa’ar Ph.D Final Report - 31

[AT04] Rajeev Alur and Salvatore La Torre. Deterministic generators and

games for LTL fragments. ACM Trans. Comput. Log., pages 1–25,

2004.

[BGJ+07] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman,

Amir Pnueli, and Martin Weiglhofer. Specify, compile, run: Hard-

ware from PSL. Electr. Notes Theor. Comput. Sci., pages 3–16, 2007.

[BGS06] Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algo-

rithm for strongly connected component analysis in n log n symbolic

steps. Formal Methods in System Design, pages 37–56, 2006.

[BL69] J. Richard Büchi and Lawrence H. Landweber. Solving sequential

conditions by finite-state strategies. Trans. Amer. Math. Soc., pages

295–311, 1969.

[BPPS10] Roderick Bloem, Barbara Jobstmann Nir Piterman, Amir Pnueli, and

Yaniv Sa’ar. Synthesis of reactive(1) designs. Journal of Computer

and System Sciences, Special Issue in Honor of Amir Pnueli, 2010.

Under revision.

[BPSZ10] Ittai Balaban, Amir Pnueli, Yaniv Sa’ar, and Lenore D. Zuck. Ver-

ification of multi-linked heaps. Journal of Computer and System

Sciences, Special Issue in Honor of Amir Pnueli, 2010. Under revi-

sion.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of

synchronization skeletons using branching time temporal logic. In

Yaniv Sa’ar Ph.D Final Report - 32

Proc. IBM Workshop on Logics of Programs, pages 52–71. Springer-

Verlag, 1981.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Auto-

matic verification of finite-state concurrent systems using temporal

logic. ACM Transactions on Programming Languages and Systems

(TOPLAS), 1986.

[CG87] Edmund M. Clarke and Orna Grumberg. Avoiding the state explo-

sion problem in temporal logic model checking. In PODC, pages

294–303, 1987.

[Chu63] Alonzo Church. Logic, arithmetic and automata. In Proc. 1962 Int.

Congr. Math., pages 23–25, Upsala, 1963.

[CN07] A. Cohen and K. S. Namjoshi. Local proofs for global safety proper-

ties. In Proc. 19th Int. Conf. on Computer Aided Verification, pages

55–67. Springer-Verlag, 2007.

[CN08] Ariel Cohen and Kedar S. Namjoshi. Local proofs for linear-time

properties of concurrent programs. In Proc. 20th Int. Conf. on Com-

puter Aided Verification, pages 149–161. Springer-Verlag, 2008.

[CNS10a] Ariel Cohen, Kedar S. Namjoshi, and Yaniv Sa’ar. A dash of fairness

for compositional reasoning. In Proc. 22nd Int. Conf. on Computer

Aided Verification, 2010.

[CNS10b] Ariel Cohen, Kedar S. Namjoshi, and Yaniv Sa’ar. SPLIT: A com-

positional LTL verifier. In Proc. 22nd Int. Conf. on Computer Aided

Verification, 2010. web: http://split.ysaar.net/.

Yaniv Sa’ar Ph.D Final Report - 33

[CNS+10c] Ariel Cohen, Kedar S. Namjoshi, Yaniv Sa’ar, Lenore D. Zuck, and

Katya I. Kisyova. Parallelizing a symbolic compositional model-

checking algorithm. In Proc. 6th Int. Haifa Verification Conf., 2010.

to appear.

[EL87] E. Allen Emerson and Chin-Laung Lei. Modalities for model check-

ing: Branching time logic strikes back. Sci. of Comp. Programming,

1987.

[FF05] Robert E. Filman and Daniel P. Friedman. Aspect-oriented pro-

gramming is quantification and obliviousness. In Robert E. Filman,

Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors, Aspect-

Oriented Software Development, pages 21–35. Addison-Wesley,

Boston, 2005.

[GAPK08] Hadas K. Gazit, Nora Ayanian, George J. Pappas, and Vijay Kumar.

Recycling controllers. In IEEE Conference on Automation Science

and Engineering, 2008.

[GK07] Max Goldman and Shmuel Katz. MAVEN: Modular aspect verifica-

tion. In TACAS, pages 308–322. Springer-Verlag, 2007.

[HMS10] David Harel, Shar Maoz, and Itai Segall. Using automata represen-

tations of LSCs for smart play-out and synthesis. in preparation,

2010.

[HRS05] Aidan Harding, Mark Ryan, and Pierre-Yves Schobbens. A new

algorithm for strategy synthesis in LTL games. In Tools and Al-

Yaniv Sa’ar Ph.D Final Report - 34

gorithms for the Construction and the Analysis of Systems, pages

477–492. Springer-Verlag, 2005.

[HS10] David Harel and Itai Segall. Synthesis from live sequence chart spec-

ifications. in preparation, 2010.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Pro-

gram repair as a game. In Proc. 17th Int. Conf. on Computer Aided

Verification, pages 226–238. Springer-Verlag, 2005.

[KA08] Christian Kästner and Sven Apel. Type-checking software product

lines - a formal approach. In ASE, pages 258–267. IEEE, 2008.

[Kat06] Shmuel Katz. Aspect categories and classes of temporal proper-

ties. In T. Aspect-Oriented Software Development I, pages 106–134,

2006.

[KFG04] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Ver-

ifying aspect advice modularly. In SIGSOFT FSE, pages 137–146.

ACM, 2004.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin.

Aspect-oriented programming. In Mehmet Aksit and Satoshi Mat-

suoka, editors, ECOOP, pages 220–242. Springer-Verlag, 1997.

[KPP03] Yonit Kesten, Nir Piterman, and Amir Pnueli. Bridging the gap be-

tween fair simulation and trace inclusion. In Proc. 15th Int. Conf. on

Computer Aided Verification, pages 381–392, 2003.

Yaniv Sa’ar Ph.D Final Report - 35

[KPP05] Yonit Kesten, Nir Piterman, and Amir Pnueli. Bridging the gap be-

tween fair simulation and trace inclusion. Inf. and Comp., pages

36–61, 2005.

[KPRS02] Yonit Kesten, Amir Pnueli, Lion Raviv, and Elad Shahar. LTL model

checking with strong fairness. Formal Methods in System Design,

2002.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.

Trans. Soft. Eng., pages 125–143, 1977.

[Ltd99] ARM Ltd. AMBA specification (rev. 2). Available from

www.arm.com, 1999.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, Boston, 1993.

[MP91] Zohar Manna and Amir Pnueli. Completing the temporal picture.

Theor. Comp. Sci., pages 97–130, 1991.

[MS11] Shahar Maoz and Yaniv Sa’ar. AspectLTL: An aspect language for

LTL specifications. In Proc. 10th Int. Conf. on Aspect-Oriented Soft-

ware Development, 2011. to appear.

[MW84] Zohar Manna and Pierre Wolper. Synthesis of communicating pro-

cesses from temporal logic specifications. ACM Trans. Prog. Lang.

Sys., pages 68–93, 1984.

Yaniv Sa’ar Ph.D Final Report - 36

[Nam07] Kedar S. Namjoshi. Symmetry and completeness in the analysis of

parameterized systems. In Proc. 8th Int. Conf. on Verification, Model

Checking, and Abstract Interpretation, 2007.

[Nie] Jorn L. Nielsen. BuDDy. http://buddy.sourceforge.net.

[OG76] Susan Owicki and David Gries. Verifying properties of parallel pro-

grams: An axiomatic approach. Commun. ACM, pages 279–285,

1976.

[OSRSC01] Sam Owre, Natarajan Shankar, John M. Rushby, and Dave Stringer-

Calvert. PVS System Guide. Menlo Park, CA, 2001.

[PA04] Amir Pnueli and Tamarah Arons. TLPVS: A PVS-Based LTL Verifi-

cation System. In Verification: Theory and Practice, pages 598–625,

2004.

[Pit09] Nir Piterman. Suggested projects.

http://www.doc.ic.ac.uk/∼npiterma/projects.html, 2009.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–

57, 1977.

[Pnu85] Amir Pnueli. In transition from global to modular temporal rea-

soning about programs. Logics and Models of Concurrent Systems,

pages 123–144, 1985.

[PP06] Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett

games. In Proc. 21st IEEE Symp. Logic in Comp. Sci., pages 275–

284, 2006.

Yaniv Sa’ar Ph.D Final Report - 37

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1)

designs. In Proc. 7th Int. Conf. on Verification, Model Checking, and

Abstract Interpretation, pages 364–380. Springer-Verlag, 2006.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous

reactive module. In Proc. 16th Int. Colloq. Aut. Lang. Prog., pages

652–671. Springer-Verlag, 1989.

[PS96a] Amir Pnueli and Elad Shahar. A platform for combining deductive

with algorithmic verification. In Proc. 8th Int. Conf. on Computer

Aided Verification, pages 184–195, 1996.

[PS96b] Amir Pnueli and Elad Shahar. The tlv system and its applications.

Technical report, The Weizmann Institute, 1996.

[PS08] Amir Pnueli and Yaniv Sa’ar. All you need is compassion. In Proc.

9th Int. Conf. on Verification, Model Checking, and Abstract Inter-

pretation, pages 233–247, 2008.

[PSZ10a] Amir Pnueli, Yaniv Sa’ar, and Lenore D. Zuck. All you need is

compassion. in preparation, 2010.

[PSZ10b] Amir Pnueli, Yaniv Sa’ar, and Lenore D. Zuck. JTLV: A framework

for developing verification algorithms. In Proc. 22nd Int. Conf. on

Computer Aided Verification, pages 171–174, 2010.

[Rab72] Michael O. Rabin. Automata on Infinite Objects and Churc’s Prob-

lem, volume 13. Amer. Math. Soc., 1972.

Yaniv Sa’ar Ph.D Final Report - 38

[Ros92] Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis,

Weizmann Institute of Science, 1992.

[Sa’] Yaniv Sa’ar. JTLV – web API.

http://jtlv.ysaar.net/resources/javaDoc/API1.3.2/.

[SB05] Volker Stolz and Eric Bodden. Temporal assertions using AspectJ.

In 5th Workshop on Runtime Verification, pages 109–124. Elsevier,

2005.

[SMV] SMV model checker.

http://www.cs.cmu.edu/˜modelcheck/smv.html.

[Som98] Fabio Somenzi. CUDD: CU Decision Diagram package.

http://vlsi.colorado.edu/ fabio/CUDD/, 1998.

[SRBV96] Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton, and Al-

berto S. Vincentelli. High performance BDD package based on ex-

ploiting memory hierarchy. In Proc. 33rd Conf. on Design Automa-

tion, pages 635–640, June 1996.

[TBKC07] Sahil Thaker, Don S. Batory, David Kitchin, and William R. Cook.

Safe composition of product lines. In GPCE, pages 95–104. ACM,

2007.

[WHT03] Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic

synthesis of finite-state controllers for request-response specifica-

tions. In Proc. of the Int. Conf. on the Implementation and Appli-

cation of Automata, pages 11–22. Springer-Verlag, 2003.

Yaniv Sa’ar Ph.D Final Report - 39

[WTM10a] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray.

Automatic synthesis of robust embedded control software. submitted

to AAAI’10, 2010.

[WTM10b] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray.

Receding horizon control for temporal logic specifications, 2010.

	Introduction
	Handling Compassion
	The Legacy Recursive Rule
	All You Need is Compassion PS08,PSZ

	JTLV: A Framework for Developing Verification Algorithms PSZ10
	Synthesis
	Synthesis of Reactive(1) Designs PPS06,BJPPS10
	AspectLTL: An Aspect Language for LTL Specifications MS11

	Compositional Methods
	Parallelizing A Symbolic Compositional Model-Checking Algorithm CNSZK10
	A Dash of Fairness for Compositional Reasoning CNS10a
	SPLIT: A Compositional LTL Verifier CNS10b

	Conclusion

